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* Challenges and Possibilities for Tropical
Dendrochronology

* Progress in tropical isotope
dendroclimatology

“ Paradoxical Dendrochronology” — Using
Tropical Montane Cloud Forests for
Paleoclimatology

*Theoretical and Technical Considerations
for Tropical Dendrochronology iIn
Neotropical Cloud Forests



(Cane and Evans 2000)

ENSO is dominant mode of interannual climate
variability

 Tropics have the energy and dynamics to influence
global climate

 Tropical interannual and interdecadal variability cause
anomalous climate patterns around the world through
atmospheric teleconnections

v' Unfortunately, long instrumental weather
records are sparse in the tropics; increased
proxy records from the tropics needed
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Fig. 1. Equal-area map of locations of high resolution coral and tree-ring paleoclimate
data currently in the NGDC World Data Center-A for Paleochmatology electronic database
(http://'www.ngdc.noaa.gov/paleo/). Plots as of June 2003.

Evans and Schrag [2004]



Evans and Schrag [2004]

Fig. 2. Photographs of 5 mm-diameter increment core sections taken
from extratropical and tropical tree species. Top: Harvard Forest (Pe-
tersham. MA, USA) Pinus strobus (White Pine). Bottom: Costa Rican
dry forest Cordia sp. (Laurel). The scale 1s in centimeters. Both cores
are mounted onto blond wood core-holders. Rings are clearly visible in
the P. strobus core. but the Costa Rican Cordia sp. 1s a uniform. dark
color throughout.



Proxy network (corals) SST field reconstruction:
More data is better.
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Will the true decadal power spectrum please stand up?
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| Tropical isotope dendrochronology

“[Establish] a strategy to develop
chronometric estimates in tropical
trees lacking demonstrably annual
ring structure, using high resolution
stable iIsotopic measurements in
tropical woods.”

Evans and Schrag [2004]



methodology

Very Fine Sampling Intervals

W\{\/\/\A/‘ J\WW\N\J\/\/\W Oxygen Isotope Time Series

PALEOCLIMATE INFORMATION




technology

1. Mechanistic Model
[Roden et al. 2000]

5180 =f,- (8180, + £5) + (1 —1F,) - (5180, + &)

cellulose

2. Continuous flow IRMS
[Brenna et al. 1999]

» Oxygen isotope composition of organic matter
» throughput: one 100ug sample / 5 minutes
* Precision approaching 0.3 %o on standard materials

3. Alpha-cellulose processing chemistry
[modified after Brendel et al. 2000]

« Non-toxic, easy, cheap
« Fast: 100 samples/person/4 hours




Stable Isotope Model
Roden et al. (2000) Oxygen Isotope Model
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v Most important controls on cellulose oxygen isotope values are source
water isotope ratios and the amount of leaf water that experiences
evapotranspiration (a function of relative humidity, insolation).




Roden et al. (2000) Oxygen Isotope Model
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v Most important controls on cellulose oxygen isotope values are
and the amount of leaf water that experiences
(a function of relative humidity, insolation).



Chronology from isotopes
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Evans and Schrag [2004]




—&— ¢limatology

-~ canonical ENSO event
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La Selva, Costa Rica
(tropical wet forest)

» 17+2 isotope cycles for 17
year-old trees. 4-6 %o cycles in
the series at intervals ranging
from 4-18mm.

*The highest JJAS rainfall totals
are found in 1994, 1991, 1986,
and 1997, and correspond to
low 880 values.

=A wet period from 1990-1991,
corresponds to a damped
annual cycle and lower 1990-
1991, a wet period, corresponds
to a muted annual cycle and low
6180 values, and is consistent

with a rainy dry season in winter
1990-1991.



Evans et al. [2002]

Results: Amazon Rain Forest Erismao wncinatiom
Santarem (5LTW, 2.55)

Rainfall Climatology
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Moving upslope:
a tropical isotope dendrochronology approach to
neotropical montane cloud forest paleoclimatology



Use stable isotope dendrochronology
and the unique hydroclimatic
conditions of tropical montane cloud
forests to construct a proxy record of
Pacific climate variability from the
terrestrial tropics.

- Takes advantage of “isotopic
seasonality” of cloud forest hydrology for
telling time AND reconstructing climate

- Doesn’t require annual rings



Neotropical cloud forests

Neotropical Montane Cloud Forest Locations

Source: Kappelle and Brown 2001



“Isotopic seasonality”

Why Cloud Forests?
Rainfall vs. Fog Water Isotope Values
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3 CORE ASSUMPTIONS:

[1] Oxygen isotope ratio of tree cellulose records the
changes in climate and weather (seasonal and
interannual),

[2] Cloud forest trees use different sources of water
with distinct oxygen isotope signatures over the course
of the year

[3] Sea surface temperature changes will alter
atmospheric conditions and water use in cloud forests
sufficiently so as to be detected in the oxygen isotope
ratio of tree cellulose.



3 CORE ASSUMPTIONS:

[2] Cloud forest trees use different sources of water
with distinct oxygen isotope signatures over the course
of the year

[3] Sea surface temperature changes will alter
atmospheric conditions and water use in cloud forests
sufficiently so as to be detected in the oxygen isotope
ratio of tree cellulose.




Stable Isotope Model
Roden et al. (2000) Oxygen Isotope Model
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v Most important controls on cellulose oxygen isotope values are
and the amount of leaf water that experiences
(a function of , insolation).




3 CORE ASSUMPTIONS:

[1] Oxygen isotope ratio of tree cellulose records
changes in climate and weather (seasonal and
interannual),

[3] Sea surface temperature changes will alter
atmospheric conditions and water use in cloud forests
sufficiently so as to be detected in the oxygen isotope
ratio of tree cellulose.



Hydroclimatology

RAINFALL + CLOUD
RAINFALL ONLY INPUTS
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v’ Cloud water inputs to montane forests

compensate for lack of rainfall during regional
dry season.

)

Figure from Cavalier and Goldstein 1989



tree-water relationships

Precipitation vs. Fog Water Use in
Sequoia-dominated ecosystems
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v Trees in “fog-dependent” ecosystems with wet-dry seasonality rely on
cloud-water inputs during the “dry” season and precipitation during the
rainy season.




Theoretical Background
3 CORE ASSUMPTIONS:

[1] Oxygen isotope ratio of tree cellulose records
changes in climate and weather (seasonal and
interannual),

[2] Cloud forest trees use different sources of water
with distinct oxygen isotope signatures over the course
of the year



Interannual variability

Clear-Sky Days at Monteverde
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v There are more dry days in the Monteverde Cloud Forest in Costa Rica
when eastern Pacific Sea Surface Temperatures are higher (p<0.05)

Source: Pounds et al. [1999]




Interannual variability

corr Jan—0ec averaged NINO3 index
with Jan—Dec averaged NCEP/NCAR 850mb relative humidity
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v Relative humidity decreases during the dry season at cloud forest
elevations during warm ENSO events in Central America

Data source: Kalnay et al. [1997]




Increased amplitude Conceptu al m()del

with higher SSTs
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v" In cloud forests, seasonal source water differences should dominate the
yearly isotope cycle, while at interannual frequencies, periodic changes in
relative humidity related to sea surface temperature variability (including
ENSO events) should control isotope ratios in tree cellulose




Benefits from Cloud Forest
Dendroclimatology

[1] Potential for long records
because of lower deforestation

. rates, slow growth rate of trees.

8 [2] More reliable ENSO
| signature? (Doesn’t rely on

=¥ circulation, not subject to proxy

2 Instability ?)

[3] Cloud forests sensitive to
trends in global climate,
Including temperature/humidity
changes as a consequence of
natural or anthropogenic
climate change.



The Work Ahead

1] Age model confirmation

2] Replication

3] Calibration, modeling, and
chronology development

[4] Integration with mature
proxies for climate field
reconstruction









	Will the true decadal power spectrum please stand up?

